参考:
Metabolic Features of Multiple Myeloma
1. Kristinsson S.Y., Björkholm M., Goldin L.R., Blimark C., Mellqvist U.H., Wahlin A., Turesson I., Landgren O. Patterns of hematologic malignancies and solid tumors among 37,838 first-degree relatives of 13,896 multiple myeloma patients in Sweden. Int. J. Cancer. 2009;125:2147–2150. doi: 10.1002/ijc.24514. [PMC free article] [PubMed] [CrossRef]
2. Kawano Y., Moschetta M., Manier S., Glavey S., Görgün GT., Roccaro A.M., Anderson K.C., Ghobrial I.M. Targeting the bone marrow microenvironment in multiple myeloma. Immunol. Rev. 2015;263:160–172. doi: 10.1111/imr.12233. [PubMed] [CrossRef]
3. Kühnel A., Blau O., Nogai K.A., Blau I.W. The Warburg effect in Multiple Myeloma and its microenvironment. Med. Res. Arch. 2017;5:1–16.
4. Rajkumar S.V. Evolving diagnostic criteria for multiple myeloma. Hematol. Am. Soc. Hematol. Educ. Program. 2015;2015:272–278. doi: 10.1182/asheducation-2015.1.272. [PubMed] [CrossRef]
5. Ramsenthaler C., Kane P., Gao W., Siegert R.J., Edmonds P.M., Schey S.A., Higginson I.J. Prevalence of symptoms in patients with multiple myeloma: A systematic review and meta-analysis. Eur. J. Haematol. 2016;97:416–429. doi: 10.1111/ejh.12790. [PubMed] [CrossRef]
6. Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136:E359–E386. doi: 10.1002/ijc.29210. [PubMed] [CrossRef]
7. Kumar S.K., Rajkumar S.V., Dispenzieri A., Lacy M.Q., Hayman S.R., Buadi F.K., Zeldenrust S.R., Dingli D., Russell S.J., Lust J.A., et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111:2516–2520. doi: 10.1182/blood-2007-10-116129. [PMC free article] [PubMed] [CrossRef]
8. Bianchi G., Richardson P.G., Anderson K.C. Promising therapies in multiple myeloma. Blood. 2015;126:300–310. doi: 10.1182/blood-2015-03-575365. [PMC free article] [PubMed] [CrossRef]
9. Moreau P., Attal M., Facon T. Frontline therapy of multiple myeloma. Blood. 2015;125:3076–3084. doi: 10.1182/blood-2014-09-568915. [PubMed] [CrossRef]
10. Russo A., Saide A., Smaldone S., Faraonio R., Russo G. Role of uL3 in Multidrug Resistance in p53-Mutated Lung Cancer Cells. Int. J. Mol. Sci. 2017;18:547 doi: 10.3390/ijms18030547. [PMC free article] [PubMed] [CrossRef]
11. Russo A., Russo G. Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress. Int. J. Mol. Sci. 2017;18:140 doi: 10.3390/ijms18010140. [PMC free article] [PubMed] [CrossRef]
12. Folkman J., Watson K., Ingber D., Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989;339:58–61. doi: 10.1038/339058a0. [PubMed] [CrossRef]
13. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932–936. doi: 10.1038/nature04478. [PubMed] [CrossRef]
14. Vacca A., Ribatti D. Angiogenesis and vasculogenesis in multiple myeloma: Role of inflammatory cells. Recent Results Cancer Res. 2011;183:87–95. doi: 10.1007/978-3-540-85772-3_4. [PubMed] [CrossRef]
15. Hose D., Moreaux J., Meissner T., Seckinger A., Goldschmidt H., Benner A., Mahtouk K., Hillengass J., Rème T., De Vos J., et al. Induction of angiogenesis by normal and malignant plasma cells. Blood. 2009;114:128–143. doi: 10.1182/blood-2008-10-184226. [PubMed] [CrossRef]
16. Vacca A., Ria R., Semeraro F., Merchionne F., Coluccia M., Boccarelli A., Scavelli C., Nico B., Gernone A., Battelli F., et al. Endothelial cells in the bone marrow of patients with multiple myeloma. Blood. 2003;102:3340–3348. doi: 10.1182/blood-2003-04-1338. [PubMed] [CrossRef]
17. Caligaris-Cappio F., Bergui L., Gregoretti M.G., Gaidano G., Gaboli M., Schena M., Zallone A.Z., Marchisio P.C. Role of bone marrow stromal cells in the growth of human multiple myeloma. Blood. 1991;77:2688–2693. [PubMed]
18. Shafat M.S., Gnaneswaran B., Bowles K.M., Rushworth S.A. The bone marrow microenvironment—Home of the leukemic blasts. Blood Rev. 2017;31:277–286. doi: 10.1016/j.blre.2017.03.004. [PubMed] [CrossRef]
19. Lemaire M., Deleu S., De Bruyne E., Van Valckenborgh E., Menu E., Vanderkerken K. The microenvironment and molecular biology of the multiple myeloma tumor. Adv. Cancer Res. 2011;110:19–42. doi: 10.1016/B978-0-12-386469-7.00002-5. [PubMed] [CrossRef]
20. Hideshima T., Bergsagel P.L., Kuehl W.M., Anderson K.C. Advances in biology of multiple myeloma: Clinical applications. Blood. 2004;104:607–618. doi: 10.1182/blood-2004-01-0037. [PubMed] [CrossRef]
21. Moyo T.K., Bouchnita A., Eymard N., Volpert V., Koury M.J. Effects of bone marrow infiltration by multiple myeloma on erythropoiesis. Blood. 2015;126:2143.
22. Christoulas D., Terpos E., Dimopoulos M.A. Pathogenesis and Management of Myeloma Bone Disease. Expert Rev. Hematol. 2009;2:385–398. doi: 10.1586/ehm.09.36. [PubMed] [CrossRef]
23. Silvestris F., Ciavarella S., De Matteo M., Tucci M., Dammacco F. Bone-Resorbing Cells in Multiple Myeloma: Osteoclasts, Myeloma Cell Polykaryons, or Both? Oncologist. 2009;14:264–275. doi: 10.1634/theoncologist.2008-0087. [PubMed] [CrossRef]
24. Merico F., Bergui L., Gregoretti M.G., Ghia P., Aimo G., Lindley I.J., Caligaris-Cappio F. Cytokines involved in the progression of multiple myeloma. Clin. Exp. Immunol. 1993;92:27–31. doi: 10.1111/j.1365-2249.1993.tb05943.x. [PMC free article] [PubMed] [CrossRef]
25. Pavlova N.N., Thompson C.B. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47. doi: 10.1016/j.cmet.2015.12.006. [PMC free article] [PubMed] [CrossRef]
26. Brown G.K. Glucose transporters: Structure, function and consequences of deficiency. J. Inherit. Metab. Dis. 2000;23:237–246. doi: 10.1023/A:1005632012591. [PubMed] [CrossRef]
27. Alfarouk K.O., Verduzco D., Rauch C., Muddathir A.K., Bashir H.H., Elhassan G.O., Ibrahim M.E., Orozco J.D.P., Cardone R.A., Reshkin S.J. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience. 2014;1:777–802. doi: 10.18632/oncoscience.109. [PMC free article] [PubMed] [CrossRef]
28. Zheng J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation. Oncol. Lett. 2012;4:1151–1157. doi: 10.3892/ol.2012.928. [PMC free article] [PubMed] [CrossRef]
29. DeBerardinis R.J., Chandel N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016;2:2:1–2:18. doi: 10.1126/sciadv.1600200. [PMC free article] [PubMed] [CrossRef]
30. Pfeiffer T., Schuster S., Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001;292:504–507. doi: 10.1126/science.1058079. [PubMed] [CrossRef]
31. Newsholme P., Procopio J., Lima M.M.R., Pithon-Curi T.C., Curi R. Glutamine and glutamate—Their central role in cell metabolism and function. Cell Biochem. Funct. 2003;21:1–9. doi: 10.1002/cbf.1003. [PubMed] [CrossRef]
32. Pochini L., Scalise M., Galluccio M., Indiveri C. Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health. Front. Chem. 2014;2:61:1–61:23. doi: 10.3389/fchem.2014.00061. [PMC free article] [PubMed] [CrossRef]
33. Altman B.J., Stine Z.E., Dang C.V. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer. 2016;16:619–634. doi: 10.1038/nrc.2016.71. [PMC free article] [PubMed] [CrossRef]
34. Curthoys N.P., Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr. 1995;15:133–159. doi: 10.1146/annurev.nu.15.070195.001025. [PubMed] [CrossRef]
35. Moreadith R.W., Lehninger A.L. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J. Biol. Chem. 1984;259:6215–6221. [PubMed]
36. Hirschey M.D., DeBerardinis R.J., Diehl A.M., Drew J.E., Frezza C., Green M.F., Jones L.W., Ko Y.H., Le A., Lea M.A., et al. Dysregulated metabolism contributes to oncogenesis. Semin. Cancer Biol. 2015;35:129–150. doi: 10.1016/j.semcancer.2015.10.002. [PMC free article] [PubMed] [CrossRef]
37. Lane A.N., Fan T.W.M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015;43:2466–2485. doi: 10.1093/nar/gkv047. [PMC free article] [PubMed] [CrossRef]
38. Cory J.G., Cory A.H. Critical roles of glutamine as nitrogen donors in purine and pyrimidine nucleotide synthesis: Asparaginase treatment in childhood acute lymphoblastic leukemia. In Vivo. 2006;20:587–589. [PubMed]
39. Alfarouk K.O., Shayoub M.E.A., Muddathir A.K., Elhassan G.O., Bashir A.H.H. Evolution of Tumor Metabolism might Reflect Carcinogenesis as a Reverse Evolution process (Dismantling of Multicellularity) Cancers. 2011;3:3002–3017. doi: 10.3390/cancers3033002. [PMC free article] [PubMed] [CrossRef]
40. Zu X.L., Guppy M. Cancer metabolism: Facts, fantasy, and fiction. Biochem. Biophys. Res. Commun. 2004;313:459–465. doi: 10.1016/j.bbrc.2003.11.136. [PubMed] [CrossRef]
41. Gatenby R.A., Gillies R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer. 2004;4:891–899. doi: 10.1038/nrc1478. [PubMed] [CrossRef]
42. Koppenol W.H., Bounds P.L., Dang C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer. 2011;11:325–337. doi: 10.1038/nrc3038. [PubMed] [CrossRef]
43. Fantin V.R., St-Pierre J., Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–434. doi: 10.1016/j.ccr.2006.04.023. [PubMed] [CrossRef]
44. Martinez-Outschoorn U.E., Peiris-Pageès M., Pestell R.G., Sotgia F., Lisanti M.P. Cancer metabolism: A therapeutic perspective. Nat. Rev. Clin. Oncol. 2017;14:11–31. doi: 10.1038/nrclinonc.2016.60. [PubMed] [CrossRef]
45. DeBerardinis R.J., Cheng T. Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29:313–324. doi: 10.1038/onc.2009.358. [PMC free article] [PubMed] [CrossRef]
46. He Q., Shi X., Zhang L., Yi C., Zhang X., Zhang X. De novo glutamine synthesis: Importance for the proliferation of glioma cells and potentials for its detection with 13N-ammonia. Mol. Imaging. 2016;15:1–9. doi: 10.1177/1536012116645440. [PMC free article] [PubMed] [CrossRef]
47. Nicklin P., Bergman P., Zhang B., Triantafellow E., Wang H., Nyfeler B., Yang H., Hild M., Kung C., Wilson C., et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136:521–534. doi: 10.1016/j.cell.2008.11.044. [PMC free article] [PubMed] [CrossRef]
48. Thompson C.B. Rethinking the regulation of cellular metabolism. Cold Spring Harb. Symp. Quant. Biol. 2011;76:23–29. doi: 10.1101/sqb.2012.76.010496. [PubMed] [CrossRef]
49. Rathmell J.C., vander Heiden M.G., Harris M.H., Frauwirth K.A., Thompson C.B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell. 2000;6:683–692. doi: 10.1016/S1097-2765(00)00066-6. [PubMed] [CrossRef]
50. Glynn S.A., Albanes D. Folate and cancer: A review of the literature. Nutr. Cancer. 1994;22:101–119. doi: 10.1080/01635589409514336. [PubMed] [CrossRef]
51. Liu W., Phang J.M. Oncogene and Cancer—From Bench to Clinic. Volume 15. InTech; London, UK: 2013. pp. 359–390.
52. Nakano A., Miki H., Nakamura S., Harada T., Oda A., Amou H., Fujii S., Kagawa K., Takeuchi K., Ozaki S., et al. Up-regulation of hexokinaseII in myeloma cells: Targeting myeloma cells with 3-bromopyruvate. J. Bioenerg. Biomembr. 2012;44:31–38. doi: 10.1007/s10863-012-9412-9. [PubMed] [CrossRef]
53. Mathupala S.P., Ko Y.H., Pedersen P.L. Hexokinase II: Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene. 2006;25:4777–4786. doi: 10.1038/sj.onc.1209603. [PMC free article] [PubMed] [CrossRef]
54. Robey R.B., Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene. 2006;25:4683–4696. doi: 10.1038/sj.onc.1209595. [PubMed] [CrossRef]
55. Lis P., Dyląg M., Niedźwiecka K., Ko Y.H., Pedersen P.L., Goffeau A., Ułaszewski S. The HK2 dependent “Warburg Effect” and mitochondrial oxidative phosphorylation in cancer: Targets for effective therapy with 3-bromopyruvate. Molecules. 2016;21:1730 doi: 10.3390/molecules21121730. [PubMed] [CrossRef]
56. Azevedo-Silva J., Queirós O., Ribeiro A., Baltazar F., Young K.H., Pedersen P.L., Preto A., Casal M. The cytotoxicity of 3-bromopyruvate in breast cancer cells depends on extracellular pH. Biochem. J. 2015;467:247–258. doi: 10.1042/BJ20140921. [PubMed] [CrossRef]
57. Niedźwiecka K., Dyląg M., Augustyniak D., Majkowska-Skrobek G., Cal-Bąkowska M., Ko Y.H., Pedersen P.L., Goffeau A., Ułaszewski S. Glutathione may have implications in the design of 3-bromopyruvate treatment protocols for both fungal and algal infections as well as multiple myeloma. Oncotarget. 2016;7:65614–65626. doi: 10.18632/oncotarget.11592. [PMC free article] [PubMed] [CrossRef]
58. Zhang X.D., Deslandes E., Villedieu M., Poulain L., Duval M., Gauduchon P., Schwartz L., Icard P. Effect of 2-deoxy-d-glucose on various malignant cell lines in vitro. Anticancer Res. 2006;26:3561–3566. [PubMed]
59. Zhang D., Li J., Wang F., Hu J., Wang S., Sun Y. 2-Deoxy-d-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett. 2014;355:176–183. doi: 10.1016/j.canlet.2014.09.003. [PubMed] [CrossRef]
60. Gu Z., Xia J., Xu H., Frech I., Tricot G., Zhan F. NEK2 Promotes Aerobic Glycolysis in Multiple Myeloma Through Regulating Splicing of Pyruvate Kinase. J. Hematol. Oncol. 2017;10:17:1–17:11. doi: 10.1186/s13045-017-0392-4. [PMC free article] [PubMed] [CrossRef]
61. He Y., Wang Y., Liu H., Xu X., He S., Tang J., Huang Y., Miao X., Wu Y., Wang Q. Pyruvate kinase isoform M2 (PKM2) participates in multiple myeloma cell proliferation, adhesion and chemoresistance. Leuk. Res. 2015;39:1428–1436. doi: 10.1016/j.leukres.2015.09.019. [PubMed] [CrossRef]
62. Tamada M., Suematsu M., Saya H. Pyruvate Kinase M2: Multiple faces for conferring benefits on cancer cells. Clin. Cancer Res. 2012;18:5554–5561. doi: 10.1158/1078-0432.CCR-12-0859. [PubMed] [CrossRef]
63. Fujiwara S., Wada N., Kawano Y., Okuno Y., Kikukawa Y., Endo S., Nishimura N., Ueno N., Mitsuya H., Hata H. Lactate, a putative survival factor for myeloma cells, is incorporated by myeloma cells through monocarboxylate transporters 1. Exp. Hematol. Oncol. 2015;4:12:1–12:8. doi: 10.1186/s40164-015-0008-z. [PMC free article] [PubMed] [CrossRef]
64. Sonveaux P., Végran F., Schroeder T., Wergin M.C., Verrax J., Rabbani Z.N., de Saedeleer C.J., Kennedy K.M., Diepart C., Jordan B.F. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Investig. 2008;118:3930–3942. doi: 10.1172/JCI36843. [PMC free article] [PubMed] [CrossRef]
65. Doherty J.R., Cleveland J.L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Investig. 2013;123:3685–3692. doi: 10.1172/JCI69741. [PMC free article] [PubMed] [CrossRef]
66. Fujiwara S., Wada N., Kawano Y., Kikukawa Y., Mitsuya H., Hata H. Lactate is a crucial energy source for multiple myeloma (MM) cells in bone marrow microenvironment. Blood. 2013;122:3109.
67. Zhang S., Hulver M.W., McMillan R.P., Cline M.A., Gilbert E.R. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr. Metab. 2014;11:10:1–10:9. doi: 10.1186/1743-7075-11-10. [PMC free article] [PubMed] [CrossRef]
68. Niewisch M.R., Kuçi Z., Wolburg H., Sautter M., Krampen L., Deubzer B., Handgretinger R., Bruchelt G. Influence of dichloroacetate (DCA) on lactate production and oxygen consumption in neuroblastoma cells: Is DCA a suitable drug for neuroblastoma therapy? Cell. Physiol. Biochem. 2012;29:373–380. doi: 10.1159/000338492. [PubMed] [CrossRef]
69. Sanchez W.Y., McGee S.L., Connor T., Mottram B., Wilkinson A., Whitehead J.P., Vuckovic S., Catley L. Dichloroacetate inhibits aerobic glycolysis in multiple myeloma cells and increases sensitivity to bortezomib. Br. J. Cancer. 2013;108:1624–1633. doi: 10.1038/bjc.2013.120. [PMC free article] [PubMed] [CrossRef]
70. Fujiwara S., Kawano Y., Yuki H., Okuno Y., Nosaka K., Mitsuya H., Hata H. PDK1 inhibition is a novel therapeutic target in multiple myeloma. Br. J. Cancer. 2013;108:170–178. doi: 10.1038/bjc.2012.527. [PMC free article] [PubMed] [CrossRef]
71. Romero-Garcia S., Moreno-Altamiranon M.M.B., Prado-Garcia H., Sánchez-García F.J. Lactate contribution to the tumor microenvironment: Mechanisms, effects on immune cells and therapeutic relevance. Front. Immunol. 2016;7:52:1–52:11. doi: 10.3389/fimmu.2016.00052. [PMC free article] [PubMed] [CrossRef]
72. Rattigan Y.I., Patel B.B., Ackerstaff E., Sukenick G., Koutcher J.A., Glod J.W., Banerjee D. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp. Cell Res. 2012;318:326–335. doi: 10.1016/j.yexcr.2011.11.014. [PMC free article] [PubMed] [CrossRef]
73. Matsumoto T., Jimi S., Migita K., Takamatsu Y., Hara S. Inhibition of glucose transporter 1 induces apoptosis and sensitizes multiple myeloma cells to conventional chemotherapeutic agents. Leuk. Res. 2016;41:103–110. doi: 10.1016/j.leukres.2015.12.008. [PubMed] [CrossRef]
74. Bolzoni M., Chiu M., Accardi F., Vescovini R., Airoldi I., Storti P., Todoerti K., Agnelli L., Missale G., Andreoli R., et al. Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: A new attractive target. Blood. 2016;128:667–679. doi: 10.1182/blood-2016-01-690743. [PubMed] [CrossRef]
75. Accardi F., Chiu M., Bolzoni M., Storti P., Todoerti K., Agnelli L., Ferrari M., Missale G., Aversa F., Bussolati O., et al. Ammonium Production and Glutamine-Addiction of Myeloma Cells: New Attractive Targets in Multiple Myeloma. Blood. 2014;124:2067.
76. Minetto P., Soncini D., Cagnetta A., Guolo F., Retali V., Rivoli G., Bisso N., Di Felice N., Miglino M., Canepa L., et al. Glutamine-Dependence Targeting By Asparaginase Significantly Increases Anti-Myeloma Activity of Proteasome Inhibitors. Blood. 2017;130:1796.
77. Giuliani N., Chiu M., Bolzoni M., Accardi F., Bianchi M.G., Toscani D., Aversa F., Bussolati O. The potential of inhibiting glutamine uptake as a therapeutic target for multiple myeloma. Expert Opin. Ther. Targets. 2017;21:231–234. doi: 10.1080/14728222.2017.1279148. [PubMed] [CrossRef]
78. Corbet C., Feron O. Metabolic and mind shifts: From glucose to glutamine and acetate addictions in cancer. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:346–353. doi: 10.1097/MCO.0000000000000178. [PubMed] [CrossRef]
79. Chen L., Cui H. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach. Int. J. Mol. Sci. 2015;16:22830–22855. doi: 10.3390/ijms160922830. [PMC free article] [PubMed] [CrossRef]
80. Jeon Y.J., Khelifa S., Ratnikov B., Scott D.A., Feng Y., Parisi F., Ruller C., Lau E., Kim H., Brill L.M., et al. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stressinducing chemotherapies. Cancer Cell. 2015;27:354–369. doi: 10.1016/j.ccell.2015.02.006. [PMC free article] [PubMed] [CrossRef]
81. Gabay M., Li Y., Felsher D.W. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med. 2014;4:6:1–6:13. doi: 10.1101/cshperspect.a014241. [PMC free article] [PubMed] [CrossRef]
82. Effenberger M., Bommert K.S., Kunz V., Kruk J., Leich E., Rudelius M., Bargou R., Bommert K. Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation. Oncotarget. 2017;8:85858–85867. doi: 10.18632/oncotarget.20691. [PMC free article] [PubMed] [CrossRef]
83. Wise D.R., DeBerardinis R.J., Mancuso A., Sayed N., Zhang X.Y., Pfeiffer H.K., Nissim I., Daikhin E., Yudkoff M., McMahon S.B., et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA. 2008;105:18782–18787. doi: 10.1073/pnas.0810199105. [PMC free article] [PubMed] [CrossRef]
84. Gonsalves W.I., Ramakrishnan V., Hitosugi T., Ghosh T., Jevremovic D., Dutta T., Sakrikar D., Petterson X.M., Wellik L., Kumar S.K., et al. Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies. JCI Insight. 2018;3:e94543. doi: 10.1172/jci.insight.94543. [PMC free article] [PubMed] [CrossRef]
85. Casey S.C., Tong L., Li Y., Do R., Walz S., Fitzgerald K.N., Gouw A.M., Baylot V., Gütgemann I., Eilers M., et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 2016;352:227–231. doi: 10.1126/science.aac9935. [PMC free article] [PubMed] [CrossRef]
86. Cacace A., Sboarina M., Vazeille T., Sonveaux P. Glutamine activates STAT3 to control cancer cell proliferation independently of glutamine metabolism. Oncogene. 2017;36:2074–2084. doi: 10.1038/onc.2016.364. [PMC free article] [PubMed] [CrossRef]
87. Roland C.L., Arumugam T., Deng D., Liu S.H., Philip B., Gomez S., Burns W.R., Ramachandran V., Wang H., Cruz-Monserrate Z., et al. Cell surface lactate receptor GPR81 is crucial for cancer cell survival. Cancer Res. 2014;74:5301–5310. doi: 10.1158/0008-5472.CAN-14-0319. [PMC free article] [PubMed] [CrossRef]
88. Yao C., Li Y.Y., Li J., Zhang H.Y., Wang F., Bai X., Li S.S. STAT3 regulates hypoxia-induced epithelial mesenchymal transition in oesophageal squamous cell cancer. Oncol. Rep. 2016;36:108–116. doi: 10.3892/or.2016.4822. [PMC free article] [PubMed] [CrossRef]
89. Denko N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer. 2008;8:705–713. doi: 10.1038/nrc2468. [PubMed] [CrossRef]
90. Maiso P., Huynh D., Moschetta M., Sacco A., Aljawai Y., Mishima Y., Asara J.M., Roccaro A.M., Kimmelman A.C., Ghobrial I.M. Metabolic signature identifies novel targets for drug resistance in Multiple Myeloma. Cancer Res. 2015;75:2071–2082. doi: 10.1158/0008-5472.CAN-14-3400. [PMC free article] [PubMed] [CrossRef]
91. Schaefer C.F., Anthony K., Krupa S., Buchoff J., Day M., Hannay T., Buetow K.H. PID: The Pathway Interaction Database. Nucleic Acids Res. 2009;37674–679. doi: 10.1093/nar/gkn653. [PMC free article] [PubMed] [CrossRef]
92. Mulligan G., Mitsiades C., Bryant B., Zhan F., Chng W.J., Roels S., Koenig E., Fergus A., Huang Y., Richardson P., et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood. 2007;109:3177–3188. doi: 10.1182/blood-2006-09-044974. [PubMed] [CrossRef]
93. Liu Z., Jia X., Duan Y., Xiao H., Sundqvist K.G., Permert J., Wang F. Excess glucose induces hypoxia-inducible factor-1α in pancreatic cancer cells and stimulates glucose metabolism and cell migration. Cancer Biol. Ther. 2013;14:428–435. doi: 10.4161/cbt.23786. [PMC free article] [PubMed] [CrossRef]
94. Zub K.A., de Sousa M.M.L., Sarno A., Sharma A., Demirovic A., Rao S., Young C., Aas P.A., Ericsson I., Sundan A., et al. Modulation of Cell Metabolic Pathways and Oxidative Stress Signaling Contribute to Acquired Melphalan Resistance in Multiple Myeloma Cells. PLoS ONE. 2015;10:3:1–3:20. doi: 10.1371/journal.pone.0119857. [PMC free article] [PubMed] [CrossRef]
95. Cao X., Fang L., Gibbs S., Huang Y., Dai Z., Wen P., Zheng X., Sadee W., Sun D. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother. Pharmacol. 2007;59:495–505. doi: 10.1007/s00280-006-0291-9. [PubMed] [CrossRef]
96. Wei C., Bajpai R., Sharma H., Heitmeier M., Jain A.D., Matulis S.M., Nooka A.K., Mishra R.K., Hruz P.W., Schiltz G.E., et al. Development of GLUT4-selective antagonists for multiple myeloma therapy. Eur. J. Med. Chem. 2017;139:573–586. doi: 10.1016/j.ejmech.2017.08.029. [PMC free article] [PubMed] [CrossRef]
97. Bajpai R., Matulis S.M., Wei C., Nooka A.K., Von Hollen H.E., Lonial S., Boise L.H., Shanmugam M. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene. 2016;35:3955–3964. doi: 10.1038/onc.2015.464. [PMC free article] [PubMed] [CrossRef]
98. Dalva-Aydemir S., Bajpai R., Martinez M., Adekola K.U., Kandela I., Wei C., Singhal S., Koblinski J.E., Raje N.S., Rosen S.T., et al. Targeting the Metabolic Plasticity of Multiple Myeloma with FDA-Approved Ritonavir and Metformin. Clin. Cancer Res. 2015;21:1161–1171. doi: 10.1158/1078-0432.CCR-14-1088. [PMC free article] [PubMed] [CrossRef]
99. Kurtoglu M., Gao N., Shang J., Maher J.C., Lehrman M.A., Wangpaichitr M., Savaraj N., Lane A.N., Lampidis T.J. Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol. Cancer Ther. 2007;6:3049–3058. doi: 10.1158/1535-7163.MCT-07-0310. [PubMed] [CrossRef]
100. Maher J.C., Krishan A., Lampidis T.J. Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother. Pharmacol. 2004;53:116–122. doi: 10.1007/s00280-003-0724-7. [PubMed] [CrossRef]
101. Miao P., Sun X., Liu J., Huang G. Lactate dehydrogenase a in cancer: A promising target for diagnosis and therapy. IUBMB Life. 2013;65:904–910. doi: 10.1002/iub.1216. [PubMed] [CrossRef]
102. Mattaini K.R., Sullivan M.R., Vander Heiden M.G. The importance of serine metabolism in cancer. J. Cell Biol. 2016;214:249–257. doi: 10.1083/jcb.201604085. [PMC free article] [PubMed] [CrossRef]
103. Locasale J.W. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer. 2013;13:572–583. doi: 10.1038/nrc3557. [PMC free article] [PubMed] [CrossRef]
104. Zaal E.A., Wu W., Jansen G., Zweegman S., Cloos J., Berkers C.R. Bortezomib resistance in multiple myeloma is associated with increased serine synthesis. Cancer Metab. 2017;5:7:1–7:12. doi: 10.1186/s40170-017-0169-9. [PMC free article] [PubMed] [CrossRef]
105. Maddocks O.D.K., Athineos D., Cheung E.C., Lee P., Zhang T., van den Broek N.J.F., Mackay G.M., Labuschagne C.F., Gay D., Kruiswijk F., et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature. 2017;544:372–376. doi: 10.1038/nature22056. [PubMed] [CrossRef]
106. Patra K.C., Hay N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 2014;39:347–354. doi: 10.1016/j.tibs.2014.06.005. [PMC free article] [PubMed] [CrossRef]
107. Horecker B.L. The pentose phosphate pathway. J. Biol. Chem. 2002;277:47965–47971. doi: 10.1074/jbc.X200007200. [PubMed] [CrossRef]
108. Chen Y., Huang R., Ding J., Ji D., Song B., Yuan L., Chang H., Chen G. Multiple myeloma acquires resistance to EGFR inhibitor via induction of pentose phosphate pathway. Sci. Rep. 2015;5:9925:1–9925:8. doi: 10.1038/srep09925. [PMC free article] [PubMed] [CrossRef]
109. Normanno N., De Luca A., Bianco C., Strizzi L., Mancino M., Maiello M.R., Carotenuto A., de Feo G., Caponigro F., Salomon D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366:2–16. doi: 10.1016/j.gene.2005.10.018. [PubMed] [CrossRef]
110. Hothersall J.S., Gordge M., Noronha-Dutra A.A. Inhibition of NADPH supply by 6-aminonicotinamide: Effect on glutathione, nitric oxide and superoxide in J774 cells. FEBS Lett. 1998;434:97–100. doi: 10.1016/S0014-5793(98)00959-4. [PubMed] [CrossRef]
111. Thompson R.M., Dytfeld D., Reyes L., Robinson R.M., Smith B., Manevich Y., Jakubowiak A., Komarnicki M., Przybylowicz-Chalecka A., Szczepaniak T., et al. Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells. Oncotarget. 2017;8:35863–35876. doi: 10.18632/oncotarget.16262. [PMC free article] [PubMed] [CrossRef]
112. Katz B.Z. Adhesion molecules—The lifelines of multiple myeloma cells. Semin. Cancer Biol. 2010;20:186–195. doi: 10.1016/j.semcancer.2010.04.003. [PubMed] [CrossRef]
113. Burger J.A., Ghia P., Rosenwald A., Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: A target for new treatment strategies. Blood. 2009;114:3367–3375. doi: 10.1182/blood-2009-06-225326. [PMC free article] [PubMed] [CrossRef]
114. Damiano J.S., Cress A.E., Hazlehurst L.A., Shtil A.A., Dalton W.S. Cell adhesion mediated drug resistance (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999;93:1658–1667. [PMC free article] [PubMed]
115. Zhu J., Wang M., Cao B., Hou T., Mao X. Targeting the phosphatidylinositol 3-kinase/AKT pathway for the treatment of multiple myeloma. Curr. Med. Chem. 2014;21:3173–3187. doi: 10.2174/0929867321666140601204513. [PubMed] [CrossRef]
116. Steinbrunn T., Stühmer T., Sayehli C., Chatterjee M., Einsele H., Bargou R.C. Combined targeting of MEK/MAPK and PI3K/Akt signalling in multiple myeloma. Br. J. Haematol. 2012;159:430–440. doi: 10.1111/bjh.12039. [PubMed] [CrossRef]
117. Medina E.A., Oberheu K., Polusani S.R., Ortega V., Velagaleti G.V., Oyajobi B.O. PKA/AMPK signaling in relation to adiponectin’s antiproliferative effect on multiple myeloma cells. Leukemia. 2014;28:2080–2089. doi: 10.1038/leu.2014.112. [PubMed] [CrossRef]
118. Qin X., Lin L., Cao L., Zhang X., Song X., Hao J., Zhang Y., Wei R., Huang X., Lu J., et al. Extracellular matrix protein Reelin promotes myeloma progression by facilitating tumor cell proliferation and glycolysis. Sci. Rep. 2017;7:45305:1–45305:12. doi: 10.1038/srep45305. [PMC free article] [PubMed] [CrossRef]
119. Tamura H. Immunopathogenesis and immunotherapy of multiple myeloma. Int. J. Hematol. 2018;107:278–285. doi: 10.1007/s12185-018-2405-7. [PubMed] [CrossRef]
120. Krejcik J., Frerichs K.A., Nijhof I.S., van Kessel B., van Velzen J.F., Bloem A.C., Broekmans M.E.C., Zweegman S., van Meerloo J., Musters R.J.P. Monocytes and Granulocytes Reduce CD38 Expression Levels on Myeloma Cells in Patients Treated with Daratumumab. Clin. Cancer Res. 2017;23:7498–7511. doi: 10.1158/1078-0432.CCR-17-2027. [PMC free article] [PubMed] [CrossRef]
121. Hosen N., Matsunaga Y., Hasegawa K., Matsuno H., Nakamura Y., Makita M., Watanabe K., Yoshida M., Satoh K., Morimoto S. The activated conformation of integrin β7 is a novel multiple myeloma-specific target for CAR T cell therapy. Nat. Med. 2017;23:1436–1443. doi: 10.1038/nm.4431. [PubMed] [CrossRef]
122. Kouidhi S., Ben Ayed F., Benammar Elgaaied A. Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy. Front. Immunol. 2018;9:353. doi: 10.3389/fimmu.2018.00353. [PMC free article] [PubMed] [CrossRef]
123. Beckermann K.E., Dudzinski S.O., Rathmell J.C. Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine Growth Factor Rev. 2017;35:7–14. doi: 10.1016/j.cytogfr.2017.04.003. [PMC free article] [PubMed] [CrossRef]
124. Noël G., Fontsa M.L., Willard-Gallo K. The impact of tumor cell metabolism on T cell-mediated immune responses and immuno-metabolic biomarkers in cancer. Semin. Cancer Biol. 2018:1–28. doi: 10.1016/j.semcancer.2018.03.003. [PubMed] [CrossRef]
125. Housman G., Byler S., Heerboth S., Lapinska K., Longacre M., Snyder N., Sarkar S. Drug resistance in cancer: An overview. Cancers. 2014;6:1769–1792. doi: 10.3390/cancers6031769. [PMC free article] [PubMed] [CrossRef]
126. Parkin B., Ouillette P., Li Y., Keller J., Lam C., Roulston D., Li C., Shedden K., Malek S.N. Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia. Blood. 2013;121:369–377. doi: 10.1182/blood-2012-04-427039. [PMC free article] [PubMed] [CrossRef]
127. Navin N., Krasnitz A., Rodgers L., Cook K., Meth J., Kendall J., Riggs M., Eberling Y., Troge J., Grubor V., et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 2010;20:68–80. doi: 10.1101/gr.099622.109. [PMC free article] [PubMed] [CrossRef]