当NP遇到细菌细胞壁时,它可以通过释放有毒金属离子或通过产生活性氧物质(ROS)来实现其杀菌效果[146]。当与细菌细胞壁紧密接触时,源自细菌表面的带负电的基团吸引带正电的NP。那时,建立了范德华力,受体 - 配体和疏水相互作用,并通过在细菌表面建立“孔”来改变细胞壁吸收率[147,148]。此外,NP还可以穿透细胞壁,影响代谢途径,破坏线粒体,并且还可以影响随后的pH修饰和膜表面电荷紊乱的质子外排泵[146,149]。细菌物种的敏感性不仅与其细胞壁的结构有关。额外的因素可以影响细菌对NPs治疗的弱点或耐受性。 NP毒性的机制非常复杂,但通常由NP的组成,表面改性,内在性质和细菌种类决定。例如,大肠杆菌非常容易受到CuO和ZnO NP的影响,而金黄色葡萄球菌和枯草芽孢杆菌则不易受到影响[150]。 Ag NPs对大肠杆菌和金黄色葡萄球菌细菌菌株的抗菌作用高于Cu NPs对抗同种细菌[151,152]。 Cu NPs的毒性受若干因素(例如,高温,高通气,低pH,NP和细菌浓度)的组合控制,这些因素可增加毒性[153]。在用于抗大肠杆菌,枯草芽孢杆菌和金黄色葡萄球菌的CuO和ZnO NP中,CuO NPs具有最高的毒性[96,146]。
许多上述NP单独或用多种抗微生物化合物(例如抗生素和天然产物)功能化已经用于伤口愈合的应用。 Ag NPs受到科学界的广泛关注,因为它们对~650种微生物和抗生素抗性细菌具有抑制作用[24]。 Ag NPs可通过使细菌DNA变性来抑制细菌繁殖,导致细菌细胞改变,最终导致细胞死亡[154]。 Ag和Ag纳米颗粒的毒性可以根除微生物;同样,它可以对健康的人体细胞产生相同的效果。已经发现Ag对人真皮成纤维细胞具有浓度依赖性细胞毒作用[155]。随着纳米技术的扩展,专家们能够建立一个治疗窗口,增强Ag的抗菌性能,降低其最低抑菌浓度,并降低对正常人体细胞的毒性[156]。因此,许多含有Ag的伤口敷料(例如Acticoat,Bactigrass,Tegaderm,Fucidin,PolyMem Silver)已被美国食品和药物管理局[157]接受在市场上的推出。在金属NPs中,Ag NPs广泛应用于配制用于压疮的烧伤和伤口敷料的软膏[158,159]。在使用人类角质形成细胞和真皮成纤维细胞的最新研究中,Ag NPs的作用大大降低了炎性细胞因子的水平并促进了愈合[160]。
参考
1. van Koppen C.J., Hartmann R.W. Advances in the treatment of chronic wounds: A patent review. Expert Opin. Ther. Pat. 2015;25:931–937. doi: 10.1517/13543776.2015.1045879. [PubMed] [CrossRef]
2. Sorg H., Tilkorn D.J., Hager S., Hauser J., Mirastschijski U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur. Surg. Res. 2017;58:81–94. doi: 10.1159/000454919. [PubMed] [CrossRef]
3. Bowler P.G., Duerden B.I., Armstrong D.G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 2001;14:244–269. doi: 10.1128/CMR.14.2.244-269.2001. [PMC free article] [PubMed] [CrossRef]
4. World Health Organization Who Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. [(accessed on 26 May 2018)]; Available online: https://tinyurl.com/kmva5da.
5. Cardona A.F., Wilson S.E. Skin and soft-tissue infections: A critical review and the role of telavancin in their treatment. Clin. Infect. Dis. 2015;61:S69–S78. doi: 10.1093/cid/civ528. [PubMed] [CrossRef]
6. Vyas K., Vasconez H.C. Wound healing: Biologics, skin substitutes, biomembranes and scaffolds. Healthcare. 2014;2:356–400. doi: 10.3390/healthcare2030356. [PMC free article] [PubMed] [CrossRef]
7. Kopecki Z., Cowin A.J. Fighting chronic wound infection—One model at a time. Wound Pract. Res. J. Aust. Wound Manag. Assoc. 2017;25:6–13.
8. Jones V., Grey J.E., Harding K.G. Wound dressings. BMJ. 2006;332:777–780. doi: 10.1136/bmj.332.7544.777. [PMC free article] [PubMed] [CrossRef]
9. Mirza A. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev. 2018;123:33–64. doi: 10.1016/j.addr.2017.08.001. [PMC free article] [PubMed] [CrossRef]
10. Ye S., Jiang L., Wu J., Su C., Huang C., Liu X., Shao W. Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: In vitro and in vivo evaluation. ACS Appl. Mater. Interfaces. 2018;10:5862–5870. doi: 10.1021/acsami.7b16680. [PubMed] [CrossRef]
11. Anjum S., Arora A., Alam M.S., Gupta B. Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int. J. Pharm. 2016;508:92–101. doi: 10.1016/j.ijpharm.2016.05.013. [PubMed] [CrossRef]
12. Anjum A., Sim C.H., Ng S.F. Hydrogels Containing Antibiofilm and Antimicrobial Agents Beneficial for Biofilm-Associated Wound Infection: Formulation Characterizations and In vitro Study. AAPS PharmSciTech. 2018;19:1219–1230. doi: 10.1208/s12249-017-0937-4. [PubMed] [CrossRef]
13. Rădulescu M., Holban A.M., Mogoantă L., Bălşeanu T.A., Mogoșanu G.D., Savu D., Popescu R.C., Fufă O., Grumezescu A.M., Bezirtzoglou E., et al. Fabrication, Characterization, and Evaluation of Bionanocomposites Based on Natural Polymers and Antibiotics for Wound Healing Applications. Molecules. 2016;21:761 doi: 10.3390/molecules21060761. [PubMed] [CrossRef]
14. Low W.L., Kenward K., Britland S.T., Amin M.C.I.M., Martin C. Essential oils and metal ions as alternative antimicrobial agents: A focus on tea tree oil and silver. Int. Wound J. 2017;14:369–384. doi: 10.1111/iwj.12611. [PubMed] [CrossRef]
15. Saporito F., Sandri G., Bonferoni M.C., Rossi S., Boselli C., Icaro Cornaglia A., Mannucci B., Grisoli P., Vigani B., Ferrari F. Essential oil-loaded lipid nanoparticles for wound healing. Int. J. Nanomed. 2017;2018:175–186. doi: 10.2147/IJN.S152529. [PMC free article] [PubMed] [CrossRef]
16. Ramasubbu D.A., Smith V., Hayden F., Cronin P. Systemic antibiotics for treating malignant wounds. Cochrane Database Syst. Rev. 2017;8:CD011609. doi: 10.1002/14651858.CD011609.pub2. [PubMed] [CrossRef]
17. Everts R. How to Treat Wound Infection. Prevention and Treatment. [(accessed on 26 May 2018)];2016 Available online: https://www.acc.co.nz/assets/pro ... und-infections.pdf.
18. Das P., Horton R. Antibiotics: Achieving the balance between access and excess. Lancet. 2016;387:102–104. doi: 10.1016/S0140-6736(15)00729-1. [PubMed] [CrossRef]
19. Aumeeruddy-Elalfi Z., Mahomoodally M. Chapter: Extraction techniques and pharmacological potential of essential oils from medicinal and aromatic plants of Mauritius. In: Peters M., editor. Essential Oils: Historical Significance, Chemical Composition and Medicinal Uses and Benefits. Nova Publisher; Hauppauge, NY, USA: 2016. pp. 51–80.
20. Aumeeruddy-Elalfi Z., Gurib-Fakim A., Mahomoodally M. Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius. J. Herb. Med. 2016;6:88–95. doi: 10.1016/j.hermed.2016.02.002. [CrossRef]
21. Scagnelli A.M. Therapeutic review: Manuka honey. J. Exot. Pet Med. 2016;25:168–171. doi: 10.1053/j.jepm.2016.03.007. [CrossRef]
22. Zarrintaj P., Moghaddam A.S., Manouchehri S., Atoufi Z., Amiri A., Amirkhani M.A., Nilforoushzadeh M.A., Saeb M.R., Hamblin M.R., Mozafari M. Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine. 2017;12:2403–2422. doi: 10.2217/nnm-2017-0173. [PubMed] [CrossRef]
23. McNamara K., Tofail S.A.M. Nanoparticles in biomedical applications. Adv. Phys. X. 2017;2:54–88. doi: 10.1080/23746149.2016.1254570. [CrossRef]
24. Zewde B., Ambaye A., Stubbs J., III, Raghavan D. A review of stabilized silver nanoparticles—Synthesis, biological properties, characterization, and potential areas of applications. JSM Nanotechnol. Nanomed. 2016;4:1043.
25. Cabuzu D., Cirja A., Puiu R., Grumezescu A.M. Biomedical applications of gold nanoparticles. Curr. Top. Med. Chem. 2015;15:1605–1613. doi: 10.2174/1568026615666150414144750. [PubMed] [CrossRef]
26. Pelgrift R.Y., Friedman A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 2013;65:1803–1815. doi: 10.1016/j.addr.2013.07.011. [PubMed] [CrossRef]
27. Yang Y., Qin Z., Zeng W., Yang T., Cao Y., Mei C., Kuang Y. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol. Rev. 2017;6:279–289. doi: 10.1515/ntrev-2016-0047. [CrossRef]
28. Chua A.W.C., Tan B.K., Foo C.L., Tan K.C., Chong S.J., Khoo Y.C. Skin tissue engineering advances in severe burns: Review and therapeutic applications. Burns Trauma. 2016;4:3–17. doi: 10.1186/s41038-016-0027-y. [PMC free article] [PubMed] [CrossRef]
29. Ho J., Walsh C., Yue D., Dardik A., Cheema U. Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review. Adv. Wound Care. 2017;6:191–209. doi: 10.1089/wound.2016.0723. [PMC free article] [PubMed] [CrossRef]
30. Olivier G., Wael N.H., Gamal B. Wound healing: Time to look for intelligent, ‘natural’ immunological approaches? BMC Immunol. 2017;18(Suppl. 1):23 doi: 10.1186/s12865-017-0207-y. [PMC free article] [PubMed] [CrossRef]
31. Enoch S., Leaper D.J. Basic science of wound healing. Surgery. 2008;26:31–37. doi: 10.1016/j.mpsur.2007.11.005. [CrossRef]
32. Xue M., Jackson C.J. Extracellular Matrix Reorganization during Wound Healing and Its Impact on Abnormal Scarring. Adv. Wound Care. 2015;4:119–136. doi: 10.1089/wound.2013.0485. [PMC free article] [PubMed] [CrossRef]
33. Rittié L. Cellular mechanisms of skin repair in humans and other mammals. J. Cell Commun. Signal. 2016;10:103–120. doi: 10.1007/s12079-016-0330-1. [PMC free article] [PubMed] [CrossRef]
34. Sanon S., Hart D.A., Tredget E.E. Molecular and cellular biology of wound healing and skin regeneration. In: Albanna M.Z., Holmes J.H., editors. Skin Tissue Engineering and Regenerative Medicine. Elsevier Inc.; New York, NY, USA: 2016. pp. 19–47.
35. Martin P., Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 2015;173:370–378. doi: 10.1111/bjd.13954. [PMC free article] [PubMed] [CrossRef]
36. Demidova-Rice T.N., Durham J.T., Herman I.M. Wound healing angio genesis: Innovations and challenges in acute and chronic wound healing. Adv. Wound Care. 2012;1:17–22. doi: 10.1089/wound.2011.0308. [PMC free article] [PubMed] [CrossRef]
37. Gould L.J., Fulton A.T. Wound Healing in Older Adults. R. I. Med. J. 2016;99:34–36. [PubMed]
38. Boateng S., Matthews K.H., Stevens H.N.E., Eccleston G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008;97:2892–2923. doi: 10.1002/jps.21210. [PubMed] [CrossRef]
39. van Rensburg J.J., Lin H., Gao X., Toh E., Fortney K.R., Ellinger S., Zwickl B., Janowicz D.M., Katz B.P., Nelson D.E., et al. The human skin microbiome associates with the outcome of and is influenced by bacterial infection. mBio. 2015;6:e01315-15. doi: 10.1128/mBio.01315-15. [PMC free article] [PubMed] [CrossRef]
40. Grice E.A. The skin microbiome: Potential for novel diagnostic and therapeutic approaches to cutaneous disease. Semin. Cutan. Med. Surg. 2014;33:98–103. doi: 10.12788/j.sder.0087. [PMC free article] [PubMed] [CrossRef]
41. Sarheed O., Ahmed A., Shouqair D., Boateng J. Antimicrobial dressings for improving wound healing. In: Alexandrescu V., editor. Wound Healing-New Insights into Ancient Challenges. InTech; London, UK: 2016. pp. 373–398.
42. Serra R., Grande R., Butrico L., Rossi A., Settimio U.F., Caroleo B., Amato B., Gallelli L., de Franciscis S. Chronic wound infections: The role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev. Anti-Infect. Ther. 2015;13:605–613. doi: 10.1586/14787210.2015.1023291. [PubMed] [CrossRef]
43. Guo S., Dipietro L.A. Factors affecting wound healing. J. Dent. Res. 2010;89:219–229. doi: 10.1177/0022034509359125. [PMC free article] [PubMed] [CrossRef]
44. Ortines R.V., Cheng L., Cohen T.S., Gami A., Dillen C.A., Ashbaugh A.G., Miller R.J., Wang Y., Tkaczyk C., Sellman B.R., et al. Anti-alpha-toxin immunoprohylaxis reduces disease severity against a Staphylococcus aureus full-thickness skin wound infection in immunocompetent and diabetic mice. [(accessed on 26 May 2018)];J. Immunol. 2017 198(Suppl. 1):77.20. Available online: http://www.jimmunol.org/content/198/1_Supplement/77.20.
45. Peerayeh S.N., Moghadas A.J., Behmanesh M. Prevalence of Virulence-Related Determinants in Clinical Isolates of Staphylococcus epidermidis. Jundishapur J. Microbiol. 2016;9:e30593. doi: 10.5812/jjm.30593. [PMC free article] [PubMed] [CrossRef]
46. Regev A., Weinberger M., Fishman M., Samra Z., Pitlik S.D. Necrotizing fasciitis caused by Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 1998;17:101–103. doi: 10.1007/s100960050025. [PubMed] [CrossRef]
47. Lu J., Yang M., Zhan M., Xu X., Yue J., Xu T. Antibiotics for treating infected burn wounds. Cochrane Database Syst. Rev. 2016;2:CD012084. doi: 10.1002/14651858.CD012084. [CrossRef]
48. Church D., Lloyd T., Peirano G., Pitout J. Antimicrobial susceptibility and combination testing of invasive Stenotrophomonas maltophilia isolates. Scand. J. Infect. Dis. 2013;45:265–270. doi: 10.3109/00365548.2012.732240. [PubMed] [CrossRef]
49. Brooke J.S. Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin. Microbiol. Rev. 2012;25:2–41. doi: 10.1128/CMR.00019-11. [PMC free article] [PubMed] [CrossRef]
50. Moet G.J., Jonesab R.N., Biedenbach D.J., Stilwell M.G., Fritsche T.R. Contemporary causes of skin and soft tissue infections in North America, Latin America, and Europe: Report from the SENTRY Antimicrobial Surveillance Program (1998–2004) Diagn. Microbiol. Infect. Dis. 2007;57:7–13. doi: 10.1016/j.diagmicrobio.2006.05.009. [PubMed] [CrossRef]
51. Kishore J. Isolation, identification & characterization of Proteus penneri—A missed rare pathogen. Indian J. Med. Res. 2012;135:341–345. [PMC free article] [PubMed]
52. Mihai M.M., Holban A.M., Giurcăneanu C., Popa L.G., Buzea M., Filipov M., Lazăr V., Chifiriuc M.C., Popa M.I. Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Rom. J. Morphol. Embryol. 2014;55:1401–1408. [PubMed]
53. Lee M.J., Pottinger P.S., Butler-Wu S., Bumgarner R.E., Russ S.M., Matsen F.A. Propionibacterium persists in the skin despite standard surgical preparation. J. Bone Jt. Surg. Am. 2014;96:1447–1450. doi: 10.2106/JBJS.M.01474. [PubMed] [CrossRef]
54. Howard A., O’Donoghue M., Feeney A., Sleator R.D. Acinetobacter baumannii: An emerging opportunistic pathogen. Virulence. 2012;3:243–250. doi: 10.4161/viru.19700. [PMC free article] [PubMed] [CrossRef]
55. Rotstein O.D., Vittorini T., Kao J., McBurney M.I., Nasmith P.E., Grinstein S. A soluble Bacteroides by-product impairs phagocytic killing of Escherichia coli by neutrophils. Infect. Immun. 1989;57:745–753. [PMC free article] [PubMed]
56. Cutting K.F., White R.J. Criteria for identifying wound infection revisited. Ostomy Wound Manag. 2005;51:28–34. [PubMed]
57. Felk A., Kretschmar M., Albrecht A., Schaller M., Beinhauer S., Nichterlein T., Sanglard D., Korting H.C., Schäfer W., Hube B. Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect. Immun. 2002;70:3689–3700. doi: 10.1128/IAI.70.7.3689-3700.2002. [PMC free article] [PubMed] [CrossRef]
58. Katakura T., Yoshida T., Kobayashi M., Herndon D.N., Suzuki F. Immunological control of methicillin-resistant Staphylococcus aureus (MRSA) infection in an immunodeficient murine model of thermal injuries. Clin. Exp. Immunol. 2005;142:419–425. doi: 10.1111/j.1365-2249.2005.02944.x. [PMC free article] [PubMed] [CrossRef]
59. Shirtliff M.E., Peters B.M., Jabra-Rizk M.A. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 2009;299:1–8. doi: 10.1111/j.1574-6968.2009.01668.x. [PMC free article] [PubMed] [CrossRef]
60. Beele H., Meuleneire F., Nahuys M., Percival S.L. A prospective randomised open label study to evaluate the potential of a new silver alginate/carboxymethylcellulose antimicrobial wound dressing to promote wound healing. Int. Wound J. 2010;7:262–270. doi: 10.1111/j.1742-481X.2010.00669.x. [PubMed] [CrossRef]
61. Percival S.L., Bowler MPhil P., Woods E.J. Assessing the effect of an antimicrobial wound dressing on biofilms. Wound Repair Regen. 2008;16:52–57. doi: 10.1111/j.1524-475X.2007.00350.x. [PubMed] [CrossRef]
62. Koehler J., Brand F.P., Goepferich A.M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 2018;100:1–11. doi: 10.1016/j.eurpolymj.2017.12.046. [CrossRef]
63. Dutra J.A.P., Carvalho S.G., Zampirolli A.C.D., Daltoé R.D., Teixeira R.M., Careta F.P., Cotrim M.A.P., Oréfice R.L., Villanova J.C.O. Papain wound dressings obtained from poly (vinyl alcohol)/calcium alginate blends as new pharmaceutical dosage form: Preparation and preliminary evaluation. Eur. J. Pharm. Biopharm. 2017;113:11–23. doi: 10.1016/j.ejpb.2016.12.001. [PubMed] [CrossRef]
64. Sasikala L., Dhurai B. Preparation and Analysis of Chitosan-Honey Films for Wound Dressing Application. [(accessed on 26 May 2018)];World Acad. Sci. Eng. Technol. Int. J. Mater. Text. Eng. 2018 12:54. Available online: urn:dai:10.1999/1307-6892/75464.
65. Ahmed A., Boateng J. Calcium alginate-based antimicrobial film dressings for potential healing of infected foot ulcers. Ther. Deliv. 2018;9:185–204. doi: 10.4155/tde-2017-0104. [PubMed] [CrossRef]
66. Capanema N.S.V., Mansur A.A.P., Carvalho S.M., Mansur L.L., Ramos C.P., Lage A.P., Mansur H.S. Physicochemical properties and antimicrobial activity of biocompatible carboxymethylcellulose-silver nanoparticle hybrids for wound dressing and epidermal repair. J. Appl. Polym. Sci. 2018;135:45812. doi: 10.1002/app.45812. [CrossRef]
67. Yao C.H., Lee C.Y., Huang C.H., Chen Y.S., Chen K.Y. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017;79:533–540. doi: 10.1016/j.msec.2017.05.076. [PubMed] [CrossRef]
68. Cerchiara T., Abruzzo A., Ñahui Palomino R.A., De Rose B.V.R., Chidichimo G., Ceseracciu L., Athanassiou A., Saladini B., Dalena F., Bigucci F., et al. Spanish Broom (Spartium junceum L.) fibers impregnated with vancomycin-loaded chitosan nanoparticles as new antibacterial wound dressing: Preparation, characterization and antibacterial activity. Eur. J. Pharm. Sci. 2017;99:105–112. doi: 10.1016/j.ejps.2016.11.028. [PubMed] [CrossRef]
69. Swenty C.F. Principles to Guide Your Dressing Choice. J. Nurse Pract. 2016;12:e125–e127. doi: 10.1016/j.nurpra.2015.12.006. [CrossRef]
70. Asfaw T., Jackson J.C., Lu Z., Zhai X., Shums S., Hirt T., Hu X., René C.R. In-Situ Forming Hydrogel Wound Dressings Containing Antimicrobial Agents. US923280B2. U.S. Patent. 2016 Jan 12;
71. Ousey K., Cutting K., Rogers A.A., Rippon M. The importance of hydration in wound healing: Reinvigorating the clinical perspective. J. Wound Care. 2016;25:122–130. doi: 10.12968/jowc.2016.25.3.122. [PubMed] [CrossRef]
72. Dhivya S., Padma V.V., Santhini E. Wound dressings—A review. Biomedicine. 2015;5:24–28. doi: 10.7603/s40681-015-0022-9. [PMC free article] [PubMed] [CrossRef]
73. Qiu Y., Qiu L., Cui J., Wei Q. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater. Sci. Eng. C. 2016;59:303–309. doi: 10.1016/j.msec.2015.10.016. [PubMed] [CrossRef]
74. Fan L., Yang H., Yang J., Peng M., Hu J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr. Polym. 2016;146:427–434. doi: 10.1016/j.carbpol.2016.03.002. [PubMed] [CrossRef]
75. Dabiri G., Damstetter E., Phillips T. Choosing a wound dressing based on common wound characteristics. Adv. Wound Care. 2016;5:32–41. doi: 10.1089/wound.2014.0586. [PMC free article] [PubMed] [CrossRef]
76. Ramos-e-Silva M., de Castro M.C.R. New dressings, including tissue-engineered living skin. Clin. Dermatol. 2002;20:715–723. doi: 10.1016/S0738-081X(02)00298-5. [PubMed] [CrossRef]
77. Flores C., Lopez M., Tabary N., Neut C., Chai F., Betbeder D., Herkt C., Cazaux F., Gaucher V., Martel B. Preparation and characterization of novel chitosan and β-cyclodextrin polymer sponges for wound dressing applications. Carbohydr. Polym. 2017:535–546. doi: 10.1016/j.carbpol.2017.06.026. [PubMed] [CrossRef]
78. Pott F.S., Meier M.J., Stocco J.G.D., Crozeta K., Ribas J.D. The effectiveness of hydrocolloid dressings versus other dressings in the healing of pressure ulcers in adults and older adults: A systematic review and meta-analysis. Rev. Lat.-Am. Enferm. 2014;22:511–529. doi: 10.1590/0104-1169.3480.2445. [PMC free article] [PubMed] [CrossRef]
79. Das S., Baker A. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front. Bioeng. Biotechnol. 2016;4:82. doi: 10.3389/fbioe.2016.00082. [PMC free article] [PubMed] [CrossRef]
80. Woundcarehandbook. [(accessed on 30 June 2018)]; Available online: http://www.woundcarehandbook.com.
81. Sweeney I.R., Miraftab M., Collyer G. A critical review of modern and emerging absorbent dressings used to treat exuding wounds. Int. Wound J. 2012;9:601–612. doi: 10.1111/j.1742-481X.2011.00923.x. [PubMed] [CrossRef]
82. Chattopadhyay S., Raines R.T., Glick G.D. Review collagen-based biomaterials for wound healing. Biopolymers. 2014;101:821–833. doi: 10.1002/bip.22486. [PMC free article] [PubMed] [CrossRef]
83. Calo E., Ballamy L., Khutoryanskiy V.V. Hydrogels in Wound Management. In: Singh T.R.R., Leverty G., Donelly R., editors. Hydrogels: Design, Synthesis and Application in Drug Delivery and Regenerative Medicine. CRC Press; Boca Raton, FL, USA: 2018.
84. Vermeulen H., Ubbink D.T., Goossens A., de Vos R., Legemate D.A. Systematic review of dressings and topical agents for surgical wounds healing by secondary intention. Br. J. Surg. 2005;92:665–672. doi: 10.1002/bjs.5055. [PubMed] [CrossRef]
85. International Wound Infection Institute (IWII) In: Wound Infection in Clinical Practice. Terry Swanson N.P.W.M., editor. Wounds International; London, UK: 2016. [(accessed on 25 July 2018)]. Available online: https://tinyurl.com/y8skcrnd.
86. Liu X., Nielsen L.H., Kłodzińska S.N., Nielsen H.M., Quc H., Christensen L.P., Rantanen J., Yangad M. Ciprofloxacin-loaded sodium alginate/poly(lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur. J. Pharm. Biopharm. 2018;123:42–49. doi: 10.1016/j.ejpb.2017.11.004. [PubMed] [CrossRef]
87. Contardi M., Heredia-Guerrero J.A., Perotto G., Valentini P., Pompa P.P., Spanò R., Goldonic L., Bertorelli R., Athanassiou A., Bayera I.S. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur. J. Pharm. Sci. 2017;104:133–144. doi: 10.1016/j.ejps.2017.03.044. [PubMed] [CrossRef]
88. Li H., Williams G.R., Wang J.W.H., Sun X., Zhu L.M. Poly(N-isopropylacrylamide)/poly(l-lactic acid-co-ɛ-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;79:245–254. doi: 10.1016/j.msec.2017.04.058. [PubMed] [CrossRef]
89. Pamfil D., Vasile C., Tarţău L., Vereştiuc L., Poiată A. pH-Responsive 2-hydroxyethyl methacrylate/citraconic anhydride–modified collagen hydrogels as ciprofloxacin carriers for wound dressings. J. Bioact. Compat. Polym. 2017;32:355–381. doi: 10.1177/0883911516684653. [CrossRef]
90. Khampieng T., Wnek G.E., Supaphol P. Electrospun DOXY-h loaded-poly(acrylic acid) nanofiber mats: In vitro drug release and antibacterial properties investigation. J. Biomater. Sci.-Polym. Ed. 2014;25:1292–1305. doi: 10.1080/09205063.2014.929431. [PubMed] [CrossRef]
91. Michalska-Sionkowska M., Kaczmarek B., Walczak M., Sionkowska A. Antimicrobial activity of new materials based on the blends of collagen/chitosan/hyaluronic acid with gentamicin sulfate addition. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;86:103–108. doi: 10.1016/j.msec.2018.01.005. [PubMed] [CrossRef]
92. Ahire J.J., Robertson D.D., van Reenen A.J., Dicks L.M.T. Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes. Biomed. Pharmacother. 2017;86:143–148. doi: 10.1016/j.biopha.2016.12.006. [PubMed] [CrossRef]
93. Etebu E., Arikekpar I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 2016;4:90–101.
94. Kohanski M.A., Dwyer D.J., Collins J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010;8:423–435. doi: 10.1038/nrmicro2333. [PMC free article] [PubMed] [CrossRef]
95. Rai M., Kon K., Gade A., Ingle A., Nagaonkar D., Paralikar P., da Silva S.S. Antibiotic Resistance. Mechanisms and New Antimicrobial Approaches. Elsevier Science; New York, NY, USA: 2016. Chapter 6—Antibiotic Resistance: Can Nanoparticles Tackle the Problem? pp. 121–143. [CrossRef]
96. Friedman N.D., Temkin E., Carmeli Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 2016;22:416–422. doi: 10.1016/j.cmi.2015.12.002. [PubMed] [CrossRef]
97. Pîrvănescu H., Bălăşoiu M., Ciurea M.E., Bălăşoiu A.T., Mănescu R. Wound infections with multi-drug resistant bacteria. Chirurgia. 2014;109:73–79. [PubMed]
98. Chávez-González M.L., Rodríguez-Herrera R., Aguilar C.N. Antibiotic Resistance. Mechanisms and New Antimicrobial Approaches. Elsevier Science; New York, NY, USA: 2016. Chapter 11—Essential Oils: A Natural Alternative to Combat Antibiotics Resistance; pp. 227–237. [CrossRef]
99. Shrestha G., Raphael J., Leavitt S.D., St Clair L.L. In vitro evaluation of the antibacterial activity of extracts from 34 species of North American lichens. Pharm. Biol. 2014;52:1262–1266. doi: 10.3109/13880209.2014.889175. [PubMed] [CrossRef]
100. Segev-Zarko L., Saar-Dover R., Brumfeld V., Mangoni M.L., Shai Y. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem. J. 2015;468:259–270. doi: 10.1042/BJ20141251. [PubMed] [CrossRef]
101. Seow Y.X., Yeo C.R., Chung H.L., Yuk H.-G. Plant essential oils as active antimicrobialagents. Crit. Rev. Food Sci. Nutr. 2014;54:625–644. doi: 10.1080/10408398.2011.599504. [PubMed] [CrossRef]
102. Agyare C., Duah Y., Oppong E., Hensel A., Oteng S., Appiah T. Review: African medicinal plants with wound healing properties. J. Ethnopharmacol. 2016;177:85–100. doi: 10.1016/j.jep.2015.11.008. [PubMed] [CrossRef]
103. Semeniuc C.A., Popa C.R., Rotar A.M. Antibacterial activity and interactions of plant essential oil combinations againts Gram-positive and Gram-negative bacteria. J. Food Drug Anal. 2017;25:403–408. doi: 10.1016/j.jfda.2016.06.002. [PubMed] [CrossRef]
104. Kavoosi G., Dadfar S.M.M., Purfard A.M., Mehrabi R. Antioxidant and Antibacterial Properties of Gelatin Films Incorporated with Carvacrol. J. Food Saf. 2013;33:423–432. doi: 10.1111/jfs.12071. [CrossRef]
105. Altiok D., Altiok E., Tihminlioglu F. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J. Mater. Sci. Mater. Med. 2010;21:2227–2236. doi: 10.1007/s10856-010-4065-x. [PubMed] [CrossRef]
106. Walsh S.E., Maillard J.-Y., Russell A.D., Catrenich C.E., Charbonneau D.L., Bartolo R.G. Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. J. Hosp. Infect. 2003;55:98–107. doi: 10.1016/S0195-6701(03)00240-8. [PubMed] [CrossRef]
107. Sienkiewicz M., Głowacka A., Kowalczyk E., Wiktorowska-Owczarek A., Jóźwiak-Bębenista M., Łysakowska M. The Biological Activities of Cinnamon, Geranium and Lavender Essential Oils. Molecules. 2014;19:20929–20940. doi: 10.3390/molecules191220929. [PMC free article] [PubMed] [CrossRef]
108. Zenati F., Benbelaid F., Khadir A., Bellahsene C., Bendahou M. Antimicrobial effects of three essential oils on multidrug resistant bacteria responsible for urinary infections. J. Appl. Pharm. Sci. 2014;4:15–18. doi: 10.7324/JAPS.2014.4113. [CrossRef]
109. Liakos I., Rizzello L., Scurr D.J., Pompa P.P., Bayer I.S., Athanassiou A. All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int. J. Pharm. 2014;463:137–145. doi: 10.1016/j.ijpharm.2013.10.046. [PubMed] [CrossRef]
110. Liakos I., Rizzello L., Hajiali H., Brunetti V., Carzino R., Pompa P., Athanassiou A., Mele E. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. J. Mater. Chem. B. 2015;3:1583–1589. doi: 10.1039/C4TB01974A. [CrossRef]
111. Rosa J.M., Bicudo Bonato L., Bragine Mancuso C., Martinelli L., Okura M.H., Malpass G.R.P., Granato A.C. Antimicrobial wound dressing films containing essential oils and oleoresins of pepper encapsulated in sodium alginate films. Cienc. Rural. 2018;48:e20170740. doi: 10.1590/0103-8478cr20170740. [CrossRef]
112. Nogueira M.N.M., Aquino S.G., Rossa Junior C., Spolidorio D.M.P. Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1b, IL-6 and IL-10 on human macrophages. Inflamm. Res. 2014;63:769–778. doi: 10.1007/s00011-014-0749-x. [PubMed] [CrossRef]
113. Bai M.-Y., Chou T.-C., Tsai J.-C., Yu W.-C. The effect of active ingredient-containing chitosan/polycaprolactone nonwoven mat on wound healing: In vitro and in vivo studies. J. Biomed. Mater. Res. Part A. 2014;102:2324–2333. doi: 10.1002/jbm.a.34912. [PubMed] [CrossRef]
114. Ge Y., Ge M. Sustained broad-spectrum antimicrobial and haemostatic chitosan-based film with immerged tea tree oil droplets. Fibers Polym. 2015;16:308–318. doi: 10.1007/s12221-015-0308-2. [CrossRef]
115. Edmondson M., Newall N., Carville K., Smith J., Riley T.V., Carson C.F. Uncontrolled, open-label, pilot study of tea tree (Melaleuca alternifolia) oil solution in the decolonisation of methicillin-resistant Staphylococcus aureus positive wounds and its influence on wound healing. Int. Wound J. 2011;8:375–384. doi: 10.1111/j.1742-481X.2011.00801.x. [PubMed] [CrossRef]
116. Lee R., Leung P., Wong T. A randomized controlled trial of topical tea tree preparation for MRSA colonized wounds. Int. J. Nurs. Sci. 2014;1:7–14. doi: 10.1016/j.ijnss.2014.01.001. [CrossRef]
117. Cuttle L., Kempf M., Kravchuk O., George N., Liu P.Y., Chang H.E., Mill J., Wang X.Q., Kimble R.M. The efficacy of Aloe vera, tea tree oil and saliva as first aid treatment for partial thickness burn injuries. Burns. 2008;34:1176–1182. doi: 10.1016/j.burns.2008.03.012. [PubMed] [CrossRef]
118. Saddiqe Z., Naeem I., Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol. 2010;131:511–521. doi: 10.1016/j.jep.2010.07.034. [PubMed] [CrossRef]
119. Güneş S., Tıhmınlıoğlu F. Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int. J. Biol. Macromol. 2017;102:933–943. doi: 10.1016/j.ijbiomac.2017.04.080. [PubMed] [CrossRef]
120. Evandri M.G., Battinelli L., Daniele C., Mastrangelo S., Bolle P., Mazzanti G. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay. Food Chem. Toxicol. 2005;43:1381–1387. doi: 10.1016/j.fct.2005.03.013. [PubMed] [CrossRef]
121. Cavanagh H.M.A., Wilkinson J.M. Biological activities of lavender essentials oil. Phytother. Res. 2002;16:301–308. doi: 10.1002/ptr.1103. [PubMed] [CrossRef]
122. Imane M.M., Houda F., Amal A.H.S., Kaotar N., Mohammed T., Imane R., Farid H. Phytochemical Composition and Antibacterial Activity of Moroccan Lavandula angustifolia Mill. J. Essent. Oil Bear. Plants. 2017;20:1074–1082. doi: 10.1080/0972060X.2017.1363000. [CrossRef]
123. Mori H., Kawanami H., Kawahata H., Aoki M. Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement. Altern. Med. 2016;16:144 doi: 10.1186/s12906-016-1128-7. [PMC free article] [PubMed] [CrossRef]
124. Sarikurkcu C., Zengin G., Oskay M., Uysal S., Ceylan R., Aktumsek A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind. Crops Prod. 2015;70:178–184. doi: 10.1016/j.indcrop.2015.03.030. [CrossRef]
125. Nostro A., Blanco A.R., Cannatelli M.A., Enea V., Flamini G., Morelli I., Sudano Roccaro A., Alonzo V. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol. Lett. 2004;230:191–195. doi: 10.1016/S0378-1097(03)00890-5. [PubMed] [CrossRef]
126. Liakos I.L., Holban A.M., Carzino R., Lauciello S., Grumezescu A.M. Electrospun Fiber Pads of Cellulose Acetate and Essential Oils with Antimicrobial Activity. Nanomaterials. 2017;7:84 doi: 10.3390/nano7040084. [PMC free article] [PubMed] [CrossRef]
127. Bogdanov S. The Bee Products: The Wonders of the Bee Hexagon, Bee Product Science. [(accessed on 1 August 2018)]; Available online: www.bee-hexagon.net.
128. Kwakman P.H., te Velde A.A., de Boer L., Speijer D., Vandenbroucke-Grauls C.M., Zaat S.A. How honey kills bacteria. FASEB J. 2010;24:2576–2582. doi: 10.1096/fj.09-150789. [PubMed] [CrossRef]
129. Molan P.C. The evidence supporting the use of honey as a wound dressing. Int. J. Lower Extrem. Wounds. 2006;5:40–54. doi: 10.1177/1534734605286014. [PubMed] [CrossRef]
130. Israili Z.H. Antimicrobial properties of honey. Am. J. Ther. 2014;21:304–423. doi: 10.1097/MJT.0b013e318293b09b. [PubMed] [CrossRef]
131. Boateng J., Diunase K.N. Comparing the antibacterial and functional properties of cameroonian and manuka honeys for potential wound healing—Have we come full cycle in dealing with antibiotic resistance? Molecules. 2015;20:16068–16084. doi: 10.3390/molecules200916068. [PMC free article] [PubMed] [CrossRef]
132. Simon A., Traynor K., Santos K., Blaser G., Bode U., Molan P. Medical honey for wound care—Still the ‘latest resort’? Evid.-Based Complement. Altern. Med. 2009;6:165–173. doi: 10.1093/ecam/nem175. [PMC free article] [PubMed] [CrossRef]
133. Kuś P.M., Szweda P., Jerković I., Tuberoso C.I. Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters. Lett. Appl. Microbiol. 2016;62:269–276. doi: 10.1111/lam.12541. [PubMed] [CrossRef]
134. Sherlock O., Dolan A., Athman R., Power A., Gethin G., Cowman S., Humphreys H. Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2010;10:47 doi: 10.1186/1472-6882-10-47. [PMC free article] [PubMed] [CrossRef]
135. Ng W.J., Lim M.S. Anti-staphylococcal activity of melaleuca honey. Southeast Asian J. Trop. Med. Public Health. 2015;46:472–479. [PubMed]
136. Jantakee K., Tragoolpua Y. Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals. Biol. Res. 2015;48:4. doi: 10.1186/0717-6287-48-4. [PMC free article] [PubMed] [CrossRef]
137. Packer J.M., Irish J., Herbert B.R., Hill C., Padula M., Blair S.E., Carter D.A., Harry E.J. Specific non-peroxide antibacterial effect of manuka honey on the Staphylococcus aureus proteome. Int. J. Antimicrob. Agents. 2012;40:43–50. doi: 10.1016/j.ijantimicag.2012.03.012. [PubMed] [CrossRef]
138. Cooper R. Honey as an effective antimicrobial treatment for chronic wounds: Is there a place for it in modern medicine? Chronic Wound Care Manag. Res. 2014;1:15–22. doi: 10.2147/CWCMR.S46520. [CrossRef]
139. Bulman S.E., Tronci G., Goswami P., Carr C., Russell S.J. Antibacterial properties of nonwoven wound dressings coated with Manuka honey or methylglyoxal. Materials. 2017;10:954 doi: 10.3390/ma10080954. [PMC free article] [PubMed] [CrossRef]
140. Lu J., Turnbull L., Burke C.M., Liu M., Carter D.A., Schlothauer R.C., Whitchurch C.B., Harry E.J. Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities. PeerJ. 2014;2:e326. doi: 10.7717/peerj.326. [PMC free article] [PubMed] [CrossRef]
141. Minden-Birkenmaier B.A., Neuhalfen R.M., Janowiak B.E., Sell S.A. Preliminary Investigation and Characterization of Electrospun Polycaprolactone and Manuka Honey Scaffolds for Dermal Repair. J. Eng. Fiber Fabr. 2015;10:126–138.
142. Yang X., Fan L., Ma L., Wang Y., Lin S., Yu F., Pan X., Luo G., Zhang D., Wang H. Green electrospun Manuka honey/silk fibroin fibrous matrices as potential wound dressing. Mater. Des. 2017;119:76–84. doi: 10.1016/j.matdes.2017.01.023. [CrossRef]
143. Tavakoli J., Tang Y. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;77:318–325. doi: 10.1016/j.msec.2017.03.272. [PubMed] [CrossRef]
144. Saikaly S.K., Khachemoune A. Honey and Wound Healing: An Update. Am. J. Clin. Dermatol. 2017;18:237–251. doi: 10.1007/s40257-016-0247-8. [PubMed] [CrossRef]
145. Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009;27:76–83. doi: 10.1016/j.biotechadv.2008.09.002. [PubMed] [CrossRef]
146. Kumar M., Curtis A., Hoskins C. Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance. Pharmaceutics. 2018;10:11 doi: 10.3390/pharmaceutics10010011. [PMC free article] [PubMed] [CrossRef]
147. Kandi V., Kandi S. Antimicrobial properties of nanomolecules: Potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol. Health. 2015;37:e2015020. doi: 10.4178/epih/e2015020. [PMC free article] [PubMed] [CrossRef]
148. Simões D., Miguel S.P., Ribeiro M.P., Coutinho P., Mendonça A.G., Correia I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018;127:130–141. doi: 10.1016/j.ejpb.2018.02.022. [PubMed] [CrossRef]
149. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. [PMC free article] [PubMed] [CrossRef]
150. Baek Y.W., An Y.J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ. 2011;409:1603–1608. doi: 10.1016/j.scitotenv.2011.01.014. [PubMed] [CrossRef]
151. Ashkarran A.A., Ghavami M., Aghaverdi H., Stroeve P., Mahmoudi M. Bacterial effects and protein corona evaluations: Crucial ignored factors for prediction of bio-efficacy of various forms of silver nanoparticles. Chem. Res. Toxicol. 2012;25:1231–1242. doi: 10.1021/tx300083s. [PubMed] [CrossRef]
152. Lu C., Brauer M.J., Botstein D. Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol. Biol. Cell. 2009;20:891–903. doi: 10.1091/mbc.e08-08-0852. [PMC free article] [PubMed] [CrossRef]
153. Pramanik A., Laha D., Bhattacharya D., Pramanik P., Karmakar P. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf. B. 2012;96:50–55. doi: 10.1016/j.colsurfb.2012.03.021. [PubMed] [CrossRef]
154. Rai M.K., Deshmukh S.D., Ingle A.P., Gade A.K. Silver nanoparticles, the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012;112:841–852. doi: 10.1111/j.1365-2672.2012.05253.x. [PubMed] [CrossRef]
155. Anisha B.S., Biswas R., Chennazhi K.P., Jayakumar R. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int. J. Biol. Macromol. 2013;62:310–320. doi: 10.1016/j.ijbiomac.2013.09.011. [PubMed] [CrossRef]
156. Nam G., Rangasamy S., Purushothaman B., Song J.M. The application of bactericidal silver nanoparticles in wound treatment. Nanomater. Nanotechnol. 2015;5:23–37. doi: 10.5772/60918. [CrossRef]
157. Verma J., Kanoujia J., Parashar P., Tripathi C.B., Saraf S.A. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv. Transl. Res. 2017;7:77–88. doi: 10.1007/s13346-016-0322-y. [PubMed] [CrossRef]
158. Kaba S.I., Egorova E.M. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells. Nanotechnol. Sci. Appl. 2015;8:19–29. doi: 10.2147/NSA.S78134. [PMC free article] [PubMed] [CrossRef]
159. Zhou Y., Chen R., He T., Xu K., Du D., Zhao N., Cheng X., Yang J., Shi H., Lin Y. Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing. ACS Appl. Mater. Interfaces. 2016;8:15067–15075. doi: 10.1021/acsami.6b03021. [PubMed] [CrossRef]
160. Frankova J., Pivodova V., Vagnerova H., Juranova J., Ulrichova J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J. Appl. Biomater. Funct. Mater. 2016;14:137–142. doi: 10.5301/jabfm.5000268. [PubMed] [CrossRef]
161. El-Naggar M.Y., Gohar Y.M., Sorour M.A., Waheeb M.G. Hydrogel dressing with a nano-formula against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa diabetic foot bacteria. J. Microbiol. Biotechnol. 2016;26:408–420. doi: 10.4014/jmb.1506.06048. [PubMed] [CrossRef]
162. Jaiswal M., Koul V., Dinda A.K. In vitro and in vivo investigational studies of a nanocomposite-hydrogel-based dressing with a silver-coated chitosan wafer for full-thickness skin wounds. J. Appl. Polym. Sci. 2016;133:43472. doi: 10.1002/app.43472. [CrossRef]
163. Nešović K., Kojić V., Rhee K.Y., Mišković-Stanković V. Electrochemical synthesis and characterization of silver doped poly(vinyl alcohol)/chitosan hydrogels. Corrosion. 2017;73:1437–1447. doi: 10.5006/2507. [CrossRef]
164. Hanif M., Juluri R.R., Fojan P., Popok V.N. Polymer films with size-selected silver nanoparticles as plasmon resonance-based transducers for protein sensing. Biointerface Res. Appl. Chem. 2016;6:1564–1568.
165. Higa A.M., Mambrini G.P., Hausen M., Strixino F.T., Leite F.L. Ag-nanoparticle-based nano-immunosensor for anti-glutathione s-transferase detection. Biointerface Res. Appl. Chem. 2016;6:1053–1058.
166. Wu J., Zheng Y., Song W., Luan J., Wen X., Wu Z., Chen X., Wang Q., Guo S. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr. Polym. 2014;102:762–771. doi: 10.1016/j.carbpol.2013.10.093. [PubMed] [CrossRef]
167. Radulescu M., Andronescu E., Dolete G., Popescu R.C., Fufă O., Chifiriuc M.C., Mogoantă L., Bălşeanu T.A., Mogoşanu G.D., Grumezescu A.M., et al. Silver Nanocoatings for Reducing the Exogenous Microbial Colonization of Wound Dressings. Materials. 2016;9:345 doi: 10.3390/ma9050345. [PMC free article] [PubMed] [CrossRef]
168. Hajipour M.J., Fromm K.M., Ashkarran A.A., de Aberasturi D.J., de Larramendi I.R., Rojo T., Serpooshan V., Parak W.J., Mahmoudi M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499–511. doi: 10.1016/j.tibtech.2012.06.004. [PubMed] [CrossRef]
169. Shafiee M.R.M., Kargar M. Synthesis of 3,4,5-substituted furan-2(5h)-ones using zno nanostructure as an efficient catalyst. Biointerface Res. Appl. Chem. 2017;7:2170–2173.
170. Applerot G., Lellouche J., Perkas N., Nitzan Y., Gedanken A., Banin E. ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv. 2012;2:2314–2321. doi: 10.1039/c2ra00602b. [CrossRef]
171. Mirzaei H., Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017;43:907–914. doi: 10.1016/j.ceramint.2016.10.051. [CrossRef]
172. Khosravian P., Ghashang M., Ghayoor H. Zinc oxide/natural-zeolite composite nano-powders: Efficient catalyst for the amoxicillin removal from wastewater. Biointerface Res. Appl. Chem. 2016;6:1538–1540.
173. Nair S., Sasidharan A., Rani V.V.D., Menon D., Nair S., Manzoor K., Raina S. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. 2009;20:S235–S241. doi: 10.1007/s10856-008-3548-5. [PubMed] [CrossRef]
174. Păunica-Panea G., Ficai A., Marin M.M., Marin Ș., Albu M.G., Constantin V.D., Dinu-Pîrvu C., Vuluga Z., Corobea M.C., Ghica M.V. New collagen-dextran-zinc oxide composites for wound dressing. J. Nanomater. 2016;14:7–11. doi: 10.1155/2016/5805034. [CrossRef]
175. Khorasani M.T., Joorabloo A., Moghaddam A., Shamsi H., Mansoori Moghadam Z. Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int. J. Biol. Macromol. 2018;114:1203–1215. doi: 10.1016/j.ijbiomac.2018.04.010. [PubMed] [CrossRef]
176. Rădulescu M., Andronescu E., Cirja A., Holban A.M., Mogoantă L., Bălşeanu T.A., Bogdan C., Neagu T.P., Lascăr I., Florea D.A., et al. Antimicrobial coatings based on zinc oxide and orange oil for improved bioactive wound dressings and other applications. Rom. J. Morphol. Embryol. 2016;57:107–114. [PubMed]
177. Díez-Pascual A.M., Díez-Vicente A.L. Wound Healing Bionanocomposites Based on Castor Oil Polymeric Films Reinforced with Chitosan-Modified ZnO Nanoparticles. Biomacromolecules. 2015;16:2631–2644. doi: 10.1021/acs.biomac.5b00447. [PubMed] [CrossRef]
178. Geraldo D.A., Needham P., Chandia N., Arratia-Perez R., Mora G.C., Villagra N.A. Green synthesis of polysaccharides-based gold and silver nanoparticles and their promissory biological activity. Biointerface Res. Appl. Chem. 2016;6:1263–1271.
179. Khashayar P., Amoabediny G., Larijani B., Hosseini M., Verplancke R., Schaubroeck D., De Keersmaecker M., Adriaens A., Vanfleteren J. Characterization of gold nanoparticle layer deposited on gold electrode by various techniques for improved sensing abilities. Biointerface Res. Appl. Chem. 2016;6:1380–1390.
180. Mikalauskaite A., Karabanovas V., Karpicz R., Rotomskis R., Jagminas A. Green synthesis of red-fluorescent gold nanoclusters: Characterization and application for breast cancer detection. Biointerface Res. Appl. Chem. 2016;6:1702–1709.
181. Nicol J.R., Dixon D., Coulter J.A. Gold nanoparticle surface functionalization: A necessary requirement in the development of novel nanotherapeutics. Nanomedicine. 2015;10:1315–1326. doi: 10.2217/nnm.14.219. [PubMed] [CrossRef]
182. Akturk O., Kismet K., Yasti A.C., Kuru S., Duymus M.E., Kaya F., Caydere M., Hucumenoglu S., Keskin D. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J. Biomater. Appl. 2016;21:283–301. doi: 10.1177/0885328216644536. [PubMed] [CrossRef]
183. Jayakumar R., Prabaharan M., Sudheesh Kumar P.T., Nair S.V., Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011;29:322–337. doi: 10.1016/j.biotechadv.2011.01.005. [PubMed] [CrossRef]
184. Regiel-Futyra A., Kus-Liśkiewicz M., Sebastian V., Irusta S., Arruebo M., Stochel G., Kyzioł A. Development of non cytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl. Mater. Interfaces. 2015;7:1087–1099. doi: 10.1021/am508094e. [PMC free article] [PubMed] [CrossRef]
185. Volkova N., Yukhta M., Pavlovich O., Goltsev A. Application of cryopreserved fibroblast culture with au nanoparticles to treat burns. Nanoscale Res. Lett. 2016;11:22. doi: 10.1186/s11671-016-1242-y. [PMC free article] [PubMed] [CrossRef]
186. Martins A.F., Facchi S.P., Monteiro J.P., Nocchi S.R., Silva C.T.P., Nakamura C.V., Girotto E.M., Rubira A.F., Muniz E.C. Preparation and cytotoxicity of N,N,N-trimethyl chitosan/alginate beads containing gold nanoparticles. Int. J. Biol. Macromol. 2015;72:466–471. doi: 10.1016/j.ijbiomac.2014.08.020. [PubMed] [CrossRef]